diff options
Diffstat (limited to 'unrar/unrar/rijndael.cpp')
| -rw-r--r-- | unrar/unrar/rijndael.cpp | 529 |
1 files changed, 419 insertions, 110 deletions
diff --git a/unrar/unrar/rijndael.cpp b/unrar/unrar/rijndael.cpp index d0d71b9..02c4d14 100644 --- a/unrar/unrar/rijndael.cpp +++ b/unrar/unrar/rijndael.cpp @@ -1,30 +1,51 @@ /************************************************************************** - * This code is based on Szymon Stefanek AES implementation: * - * http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndael-cpplib.tar.gz * - * * - * Dynamic tables generation is based on the Brian Gladman work: * - * http://fp.gladman.plus.com/cryptography_technology/rijndael * + * This code is based on Szymon Stefanek public domain AES implementation * **************************************************************************/ #include "rar.hpp" -const int uKeyLenInBytes=16, m_uRounds=10; +#ifdef USE_SSE +#include <wmmintrin.h> +#endif + +static byte S[256]= +{ + 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, + 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, + 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, + 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, + 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, + 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, + 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, + 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, + 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, + 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, + 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, + 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, + 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, + 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, + 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, + 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22 +}; + +static byte S5[256]; + +// Round constants. 10 items are used by AES-128, 8 by AES-192, 7 by AES-256. +static byte rcon[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36}; -static byte S[256],S5[256],rcon[30]; static byte T1[256][4],T2[256][4],T3[256][4],T4[256][4]; static byte T5[256][4],T6[256][4],T7[256][4],T8[256][4]; static byte U1[256][4],U2[256][4],U3[256][4],U4[256][4]; - -inline void Xor128(byte *dest,const byte *arg1,const byte *arg2) +inline void Xor128(void *dest,const void *arg1,const void *arg2) { -#if defined(PRESENT_INT32) && defined(ALLOW_NOT_ALIGNED_INT) +#ifdef ALLOW_MISALIGNED ((uint32*)dest)[0]=((uint32*)arg1)[0]^((uint32*)arg2)[0]; ((uint32*)dest)[1]=((uint32*)arg1)[1]^((uint32*)arg2)[1]; ((uint32*)dest)[2]=((uint32*)arg1)[2]^((uint32*)arg2)[2]; ((uint32*)dest)[3]=((uint32*)arg1)[3]^((uint32*)arg2)[3]; #else for (int I=0;I<16;I++) - dest[I]=arg1[I]^arg2[I]; + ((byte*)dest)[I]=((byte*)arg1)[I]^((byte*)arg2)[I]; #endif } @@ -32,7 +53,7 @@ inline void Xor128(byte *dest,const byte *arg1,const byte *arg2) inline void Xor128(byte *dest,const byte *arg1,const byte *arg2, const byte *arg3,const byte *arg4) { -#if defined(PRESENT_INT32) && defined(ALLOW_NOT_ALIGNED_INT) +#ifdef ALLOW_MISALIGNED (*(uint32*)dest)=(*(uint32*)arg1)^(*(uint32*)arg2)^(*(uint32*)arg3)^(*(uint32*)arg4); #else for (int I=0;I<4;I++) @@ -43,7 +64,7 @@ inline void Xor128(byte *dest,const byte *arg1,const byte *arg2, inline void Copy128(byte *dest,const byte *src) { -#if defined(PRESENT_INT32) && defined(ALLOW_NOT_ALIGNED_INT) +#ifdef ALLOW_MISALIGNED ((uint32*)dest)[0]=((uint32*)src)[0]; ((uint32*)dest)[1]=((uint32*)src)[1]; ((uint32*)dest)[2]=((uint32*)src)[2]; @@ -61,59 +82,349 @@ inline void Copy128(byte *dest,const byte *src) Rijndael::Rijndael() { - if (S[0]==0) + if (S5[0]==0) GenerateTables(); + CBCMode = true; // Always true for RAR. } -void Rijndael::init(Direction dir,const byte * key,byte * initVector) +void Rijndael::Init(bool Encrypt,const byte *key,uint keyLen,const byte * initVector) { - m_direction = dir; + // Check SIMD here instead of constructor, so if object is a part of some + // structure memset'ed before use, these variables are not lost. +#if defined(USE_SSE) + int CPUInfo[4]; + __cpuid(CPUInfo, 0); + if (CPUInfo[0]>=1) // Check the maximum supported cpuid function. + { + __cpuid(CPUInfo, 1); + AES_NI=(CPUInfo[2] & 0x2000000)!=0; + } + else + AES_NI=false; +#elif defined(USE_NEON) + AES_Neon=(getauxval(AT_HWCAP) & HWCAP_AES)!=0; +#endif + + // Other developers asked us to initialize it to suppress "may be used + // uninitialized" warning in code below in some compilers. + uint uKeyLenInBytes=0; + + switch(keyLen) + { + case 128: + uKeyLenInBytes = 16; + m_uRounds = 10; + break; + case 192: + uKeyLenInBytes = 24; + m_uRounds = 12; + break; + case 256: + uKeyLenInBytes = 32; + m_uRounds = 14; + break; + } byte keyMatrix[_MAX_KEY_COLUMNS][4]; - for(uint i = 0;i < uKeyLenInBytes;i++) + for(uint i = 0; i < uKeyLenInBytes; i++) keyMatrix[i >> 2][i & 3] = key[i]; - for(int i = 0;i < MAX_IV_SIZE;i++) - m_initVector[i] = initVector[i]; + if (initVector==NULL) + memset(m_initVector, 0, sizeof(m_initVector)); + else + for(int i = 0; i < MAX_IV_SIZE; i++) + m_initVector[i] = initVector[i]; keySched(keyMatrix); - if(m_direction == Decrypt) + if(!Encrypt) keyEncToDec(); } +void Rijndael::blockEncrypt(const byte *input,size_t inputLen,byte *outBuffer) +{ + if (inputLen <= 0) + return; + + size_t numBlocks = inputLen/16; +#if defined(USE_SSE) + if (AES_NI) + { + blockEncryptSSE(input,numBlocks,outBuffer); + return; + } +#elif defined(USE_NEON) + if (AES_Neon) + { + blockEncryptNeon(input,numBlocks,outBuffer); + return; + } +#endif + + byte *prevBlock = m_initVector; + for(size_t i = numBlocks;i > 0;i--) + { + byte block[16]; + if (CBCMode) + Xor128(block,prevBlock,input); + else + Copy128(block,input); + + byte temp[4][4]; + + Xor128(temp,block,m_expandedKey[0]); + Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]); + Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]); + Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]); + Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]); + + for(int r = 1; r < m_uRounds-1; r++) + { + Xor128(temp,outBuffer,m_expandedKey[r]); + Xor128(outBuffer, T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]); + Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]); + Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]); + Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]); + } + Xor128(temp,outBuffer,m_expandedKey[m_uRounds-1]); + outBuffer[ 0] = T1[temp[0][0]][1]; + outBuffer[ 1] = T1[temp[1][1]][1]; + outBuffer[ 2] = T1[temp[2][2]][1]; + outBuffer[ 3] = T1[temp[3][3]][1]; + outBuffer[ 4] = T1[temp[1][0]][1]; + outBuffer[ 5] = T1[temp[2][1]][1]; + outBuffer[ 6] = T1[temp[3][2]][1]; + outBuffer[ 7] = T1[temp[0][3]][1]; + outBuffer[ 8] = T1[temp[2][0]][1]; + outBuffer[ 9] = T1[temp[3][1]][1]; + outBuffer[10] = T1[temp[0][2]][1]; + outBuffer[11] = T1[temp[1][3]][1]; + outBuffer[12] = T1[temp[3][0]][1]; + outBuffer[13] = T1[temp[0][1]][1]; + outBuffer[14] = T1[temp[1][2]][1]; + outBuffer[15] = T1[temp[2][3]][1]; + Xor128(outBuffer,outBuffer,m_expandedKey[m_uRounds]); + prevBlock=outBuffer; + + outBuffer += 16; + input += 16; + } + Copy128(m_initVector,prevBlock); +} + + +#ifdef USE_SSE +void Rijndael::blockEncryptSSE(const byte *input,size_t numBlocks,byte *outBuffer) +{ + __m128i v = _mm_loadu_si128((__m128i*)m_initVector); + __m128i *src=(__m128i*)input; + __m128i *dest=(__m128i*)outBuffer; + __m128i *rkey=(__m128i*)m_expandedKey; + while (numBlocks > 0) + { + __m128i d = _mm_loadu_si128(src++); + if (CBCMode) + v = _mm_xor_si128(v, d); + else + v = d; + __m128i r0 = _mm_loadu_si128(rkey); + v = _mm_xor_si128(v, r0); + + for (int i=1; i<m_uRounds; i++) + { + __m128i ri = _mm_loadu_si128(rkey + i); + v = _mm_aesenc_si128(v, ri); + } + + __m128i rl = _mm_loadu_si128(rkey + m_uRounds); + v = _mm_aesenclast_si128(v, rl); + _mm_storeu_si128(dest++,v); + numBlocks--; + } + _mm_storeu_si128((__m128i*)m_initVector,v); +} +#endif + + +#ifdef USE_NEON +void Rijndael::blockEncryptNeon(const byte *input,size_t numBlocks,byte *outBuffer) +{ + byte *prevBlock = m_initVector; + while (numBlocks > 0) + { + byte block[16]; + if (CBCMode) + vst1q_u8(block, veorq_u8(vld1q_u8(prevBlock), vld1q_u8(input))); + else + vst1q_u8(block, vld1q_u8(input)); + + uint8x16_t data = vld1q_u8(block); + for (uint i = 0; i < m_uRounds-1; i++) + { + data = vaeseq_u8(data, vld1q_u8((byte *)m_expandedKey[i])); + data = vaesmcq_u8(data); + } + data = vaeseq_u8(data, vld1q_u8((byte *)(m_expandedKey[m_uRounds-1]))); + data = veorq_u8(data, vld1q_u8((byte *)(m_expandedKey[m_uRounds]))); + vst1q_u8(outBuffer, data); + + prevBlock=outBuffer; + + outBuffer += 16; + input += 16; + numBlocks--; + } + vst1q_u8(m_initVector, vld1q_u8(prevBlock)); + return; +} +#endif + -int Rijndael::blockDecrypt(const byte *input, int inputLen, byte *outBuffer) +void Rijndael::blockDecrypt(const byte *input, size_t inputLen, byte *outBuffer) { - if (input == 0 || inputLen <= 0) - return 0; + if (inputLen <= 0) + return; + + size_t numBlocks=inputLen/16; +#if defined(USE_SSE) + if (AES_NI) + { + blockDecryptSSE(input,numBlocks,outBuffer); + return; + } +#elif defined(USE_NEON) + if (AES_Neon) + { + blockDecryptNeon(input,numBlocks,outBuffer); + return; + } +#endif byte block[16], iv[4][4]; memcpy(iv,m_initVector,16); - int numBlocks=inputLen/16; - for (int i = numBlocks; i > 0; i--) + for (size_t i = numBlocks; i > 0; i--) { - decrypt(input, block); - Xor128(block,block,(byte*)iv); -#if STRICT_ALIGN - memcpy(iv, input, 16); - memcpy(outBuf, block, 16); -#else + byte temp[4][4]; + + Xor128(temp,input,m_expandedKey[m_uRounds]); + + Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]); + Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]); + Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]); + Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]); + + for(int r = m_uRounds-1; r > 1; r--) + { + Xor128(temp,block,m_expandedKey[r]); + Xor128(block, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]); + Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]); + Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]); + Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]); + } + + Xor128(temp,block,m_expandedKey[1]); + block[ 0] = S5[temp[0][0]]; + block[ 1] = S5[temp[3][1]]; + block[ 2] = S5[temp[2][2]]; + block[ 3] = S5[temp[1][3]]; + block[ 4] = S5[temp[1][0]]; + block[ 5] = S5[temp[0][1]]; + block[ 6] = S5[temp[3][2]]; + block[ 7] = S5[temp[2][3]]; + block[ 8] = S5[temp[2][0]]; + block[ 9] = S5[temp[1][1]]; + block[10] = S5[temp[0][2]]; + block[11] = S5[temp[3][3]]; + block[12] = S5[temp[3][0]]; + block[13] = S5[temp[2][1]]; + block[14] = S5[temp[1][2]]; + block[15] = S5[temp[0][3]]; + Xor128(block,block,m_expandedKey[0]); + + if (CBCMode) + Xor128(block,block,iv); + Copy128((byte*)iv,input); Copy128(outBuffer,block); + + input += 16; + outBuffer += 16; + } + + memcpy(m_initVector,iv,16); +} + + +#ifdef USE_SSE +void Rijndael::blockDecryptSSE(const byte *input, size_t numBlocks, byte *outBuffer) +{ + __m128i initVector = _mm_loadu_si128((__m128i*)m_initVector); + __m128i *src=(__m128i*)input; + __m128i *dest=(__m128i*)outBuffer; + __m128i *rkey=(__m128i*)m_expandedKey; + while (numBlocks > 0) + { + __m128i rl = _mm_loadu_si128(rkey + m_uRounds); + __m128i d = _mm_loadu_si128(src++); + __m128i v = _mm_xor_si128(rl, d); + + for (int i=m_uRounds-1; i>0; i--) + { + __m128i ri = _mm_loadu_si128(rkey + i); + v = _mm_aesdec_si128(v, ri); + } + + __m128i r0 = _mm_loadu_si128(rkey); + v = _mm_aesdeclast_si128(v, r0); + + if (CBCMode) + v = _mm_xor_si128(v, initVector); + initVector = d; + _mm_storeu_si128(dest++,v); + numBlocks--; + } + _mm_storeu_si128((__m128i*)m_initVector,initVector); +} #endif + + +#ifdef USE_NEON +void Rijndael::blockDecryptNeon(const byte *input, size_t numBlocks, byte *outBuffer) +{ + byte iv[16]; + memcpy(iv,m_initVector,16); + + while (numBlocks > 0) + { + uint8x16_t data = vld1q_u8(input); + + for (int i=m_uRounds-1; i>0; i--) + { + data = vaesdq_u8(data, vld1q_u8((byte *)m_expandedKey[i+1])); + data = vaesimcq_u8(data); + } + + data = vaesdq_u8(data, vld1q_u8((byte *)m_expandedKey[1])); + data = veorq_u8(data, vld1q_u8((byte *)m_expandedKey[0])); + + if (CBCMode) + data = veorq_u8(data, vld1q_u8(iv)); + + vst1q_u8(iv, vld1q_u8(input)); + vst1q_u8(outBuffer, data); + input += 16; outBuffer += 16; + numBlocks--; } memcpy(m_initVector,iv,16); - - return 16*numBlocks; } +#endif ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// @@ -197,8 +508,8 @@ void Rijndael::keyEncToDec() for(int r = 1; r < m_uRounds; r++) { byte n_expandedKey[4][4]; - for (int i=0;i<4;i++) - for (int j=0;j<4;j++) + for (int i = 0; i < 4; i++) + for (int j = 0; j < 4; j++) { byte *w=m_expandedKey[r][j]; n_expandedKey[j][i]=U1[w[0]][i]^U2[w[1]][i]^U3[w[2]][i]^U4[w[3]][i]; @@ -208,91 +519,89 @@ void Rijndael::keyEncToDec() } -void Rijndael::decrypt(const byte a[16], byte b[16]) +static byte gmul(byte a, byte b) // Galois field "peasant's algorithm" multiplication. { - int r; - byte temp[4][4]; - - Xor128((byte*)temp,(byte*)a,(byte*)m_expandedKey[m_uRounds]); - - Xor128(b, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]); - Xor128(b+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]); - Xor128(b+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]); - Xor128(b+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]); - - for(r = m_uRounds-1; r > 1; r--) + const byte poly=0x1b; // Lower byte of AES 0x11b irreducible polynomial. + byte result = 0; + while (b>0) { - Xor128((byte*)temp,(byte*)b,(byte*)m_expandedKey[r]); - Xor128(b, T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]); - Xor128(b+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]); - Xor128(b+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]); - Xor128(b+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]); + if ((b & 1) != 0) + result ^= a; + a = (a & 0x80) ? (a<<1)^poly : a<<1; + b >>= 1; } - - Xor128((byte*)temp,(byte*)b,(byte*)m_expandedKey[1]); - b[ 0] = S5[temp[0][0]]; - b[ 1] = S5[temp[3][1]]; - b[ 2] = S5[temp[2][2]]; - b[ 3] = S5[temp[1][3]]; - b[ 4] = S5[temp[1][0]]; - b[ 5] = S5[temp[0][1]]; - b[ 6] = S5[temp[3][2]]; - b[ 7] = S5[temp[2][3]]; - b[ 8] = S5[temp[2][0]]; - b[ 9] = S5[temp[1][1]]; - b[10] = S5[temp[0][2]]; - b[11] = S5[temp[3][3]]; - b[12] = S5[temp[3][0]]; - b[13] = S5[temp[2][1]]; - b[14] = S5[temp[1][2]]; - b[15] = S5[temp[0][3]]; - Xor128((byte*)b,(byte*)b,(byte*)m_expandedKey[0]); + return result; } -#define ff_poly 0x011b -#define ff_hi 0x80 -#define FFinv(x) ((x) ? pow[255 - log[x]]: 0) +// 2021-09-24: changed to slower and simpler code without interim tables. +// It is still fast enough for our purpose. +void Rijndael::GenerateTables() +{ + for (int I=0;I<256;I++) + S5[S[I]]=I; + + for (int I=0;I<256;I++) + { + byte s=S[I]; + T1[I][1]=T1[I][2]=T2[I][2]=T2[I][3]=T3[I][0]=T3[I][3]=T4[I][0]=T4[I][1]=s; + T1[I][0]=T2[I][1]=T3[I][2]=T4[I][3]=gmul(s,2); + T1[I][3]=T2[I][0]=T3[I][1]=T4[I][2]=gmul(s,3); + + byte b=S5[I]; + U1[b][3]=U2[b][0]=U3[b][1]=U4[b][2]=T5[I][3]=T6[I][0]=T7[I][1]=T8[I][2]=gmul(b,0xb); + U1[b][1]=U2[b][2]=U3[b][3]=U4[b][0]=T5[I][1]=T6[I][2]=T7[I][3]=T8[I][0]=gmul(b,0x9); + U1[b][2]=U2[b][3]=U3[b][0]=U4[b][1]=T5[I][2]=T6[I][3]=T7[I][0]=T8[I][1]=gmul(b,0xd); + U1[b][0]=U2[b][1]=U3[b][2]=U4[b][3]=T5[I][0]=T6[I][1]=T7[I][2]=T8[I][3]=gmul(b,0xe); + } +} -#define FFmul02(x) (x ? pow[log[x] + 0x19] : 0) -#define FFmul03(x) (x ? pow[log[x] + 0x01] : 0) -#define FFmul09(x) (x ? pow[log[x] + 0xc7] : 0) -#define FFmul0b(x) (x ? pow[log[x] + 0x68] : 0) -#define FFmul0d(x) (x ? pow[log[x] + 0xee] : 0) -#define FFmul0e(x) (x ? pow[log[x] + 0xdf] : 0) -#define fwd_affine(x) \ - (w = (uint)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), (byte)(0x63^(w^(w>>8)))) -#define inv_affine(x) \ - (w = (uint)x, w = (w<<1)^(w<<3)^(w<<6), (byte)(0x05^(w^(w>>8)))) +#if 0 +static void TestRijndael(); +struct TestRij {TestRij() {TestRijndael();exit(0);}} GlobalTestRij; -void Rijndael::GenerateTables() +// Test CBC encryption according to NIST 800-38A. +void TestRijndael() { - unsigned char pow[512],log[256]; - int i = 0, w = 1; - do - { - pow[i] = (byte)w; - pow[i + 255] = (byte)w; - log[w] = (byte)i++; - w ^= (w << 1) ^ (w & ff_hi ? ff_poly : 0); - } while (w != 1); - - for (int i = 0,w = 1; i < sizeof(rcon)/sizeof(rcon[0]); i++) + byte IV[16]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f}; + byte PT[64]={ + 0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a, + 0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51, + 0x30,0xc8,0x1c,0x46,0xa3,0x5c,0xe4,0x11,0xe5,0xfb,0xc1,0x19,0x1a,0x0a,0x52,0xef, + 0xf6,0x9f,0x24,0x45,0xdf,0x4f,0x9b,0x17,0xad,0x2b,0x41,0x7b,0xe6,0x6c,0x37,0x10, + }; + + byte Key128[16]={0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,0xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,0x3c}; + byte Chk128[16]={0x3f,0xf1,0xca,0xa1,0x68,0x1f,0xac,0x09,0x12,0x0e,0xca,0x30,0x75,0x86,0xe1,0xa7}; + byte Key192[24]={0x8e,0x73,0xb0,0xf7,0xda,0x0e,0x64,0x52,0xc8,0x10,0xf3,0x2b,0x80,0x90,0x79,0xe5,0x62,0xf8,0xea,0xd2,0x52,0x2c,0x6b,0x7b}; + byte Chk192[16]={0x08,0xb0,0xe2,0x79,0x88,0x59,0x88,0x81,0xd9,0x20,0xa9,0xe6,0x4f,0x56,0x15,0xcd}; + byte Key256[32]={0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4}; + byte Chk256[16]={0xb2,0xeb,0x05,0xe2,0xc3,0x9b,0xe9,0xfc,0xda,0x6c,0x19,0x07,0x8c,0x6a,0x9d,0x1b}; + byte *Key[3]={Key128,Key192,Key256}; + byte *Chk[3]={Chk128,Chk192,Chk256}; + + Rijndael rij; // Declare outside of loop to test re-initialization. + for (uint L=0;L<3;L++) { - rcon[i] = w; - w = (w << 1) ^ (w & ff_hi ? ff_poly : 0); - } - for(int i = 0; i < 256; ++i) - { - unsigned char b=S[i]=fwd_affine(FFinv((byte)i)); - T1[i][1]=T1[i][2]=T2[i][2]=T2[i][3]=T3[i][0]=T3[i][3]=T4[i][0]=T4[i][1]=b; - T1[i][0]=T2[i][1]=T3[i][2]=T4[i][3]=FFmul02(b); - T1[i][3]=T2[i][0]=T3[i][1]=T4[i][2]=FFmul03(b); - S5[i] = b = FFinv(inv_affine((byte)i)); - U1[b][3]=U2[b][0]=U3[b][1]=U4[b][2]=T5[i][3]=T6[i][0]=T7[i][1]=T8[i][2]=FFmul0b(b); - U1[b][1]=U2[b][2]=U3[b][3]=U4[b][0]=T5[i][1]=T6[i][2]=T7[i][3]=T8[i][0]=FFmul09(b); - U1[b][2]=U2[b][3]=U3[b][0]=U4[b][1]=T5[i][2]=T6[i][3]=T7[i][0]=T8[i][1]=FFmul0d(b); - U1[b][0]=U2[b][1]=U3[b][2]=U4[b][3]=T5[i][0]=T6[i][1]=T7[i][2]=T8[i][3]=FFmul0e(b); + byte Out[16]; + wchar Str[sizeof(Out)*2+1]; + + uint KeyLength=128+L*64; + rij.Init(true,Key[L],KeyLength,IV); + for (uint I=0;I<sizeof(PT);I+=16) + rij.blockEncrypt(PT+I,16,Out); + BinToHex(Chk[L],16,NULL,Str,ASIZE(Str)); + mprintf(L"\nAES-%d expected: %s",KeyLength,Str); + BinToHex(Out,sizeof(Out),NULL,Str,ASIZE(Str)); + mprintf(L"\nAES-%d result: %s",KeyLength,Str); + if (memcmp(Out,Chk[L],16)==0) + mprintf(L" OK"); + else + { + mprintf(L" FAILED"); + getchar(); + } } } +#endif |
